Organometallic mechanism of action and inhibition of the 4Fe-4S isoprenoid biosynthesis protein GcpE (IspG).

نویسندگان

  • Weixue Wang
  • Jikun Li
  • Ke Wang
  • Cancan Huang
  • Yong Zhang
  • Eric Oldfield
چکیده

We report the results of a series of chemical, EPR, ENDOR, and HYSCORE spectroscopic investigations of the mechanism of action (and inhibition) of GcpE, E-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) synthase, also known as IspG, an Fe(4)S(4) cluster-containing protein. We find that the epoxide of HMBPP when reduced by GcpE generates the same transient EPR species as observed on addition of the substrate, 2-C-methyl-D-erythritol-2, 4-cyclo-diphosphate. ENDOR and HYSCORE spectra of these transient species (using (2)H, (13)C and (17)O labeled samples) indicate formation of an Fe-C-H containing organometallic intermediate, most likely a ferraoxetane. This is then rapidly reduced to a ferracyclopropane in which the HMBPP product forms an eta(2)-alkenyl pi- (or pi/sigma) complex with the 4th Fe in the Fe(4)S(4) cluster, and a similar "metallacycle" also forms between isopentenyl diphosphate (IPP) and GcpE. Based on this metallacycle concept, we show that an alkyne (propargyl) diphosphate is a good (K(i) approximately 300 nM) GcpE inhibitor, and supported again by EPR and ENDOR results (a (13)C hyperfine coupling of approximately 7 MHz), as well as literature precedent, we propose that the alkyne forms another pi/sigma metallacycle, an eta(2)-alkynyl, or ferracyclopropene. Overall, the results are of broad general interest because they provide new mechanistic insights into GcpE catalysis and inhibition, with organometallic bond formation playing, in both cases, a key role.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of the 4Fe-4S Proteins IspG and IspH: an EPR, ENDOR and HYSCORE Investigation.

IspG and IspH are proteins that are involved in isoprenoid biosynthesis in most bacteria as well as in malaria parasites and are important drug targets. They contain cubane-type 4Fe-4S clusters that are involved in unusual 2H+/2e- reductions. Here, we report the results of electron paramagnetic resonance spectroscopic investigations of the binding of amino- and thiolo-HMBPP (HMBPP=E-1-hydroxy-2...

متن کامل

Broken-Symmetry DFT Computations for the Reaction Pathway of IspH, an Iron–Sulfur Enzyme in Pathogenic Bacteria

The recently discovered methylerythritol phosphate (MEP) pathway provides new targets for the development of antibacterial and antimalarial drugs. In the final step of the MEP pathway, the [4Fe-4S] IspH protein catalyzes the 2e(-)/2H(+) reductive dehydroxylation of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) to afford the isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimet...

متن کامل

The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid biosynthesis.

LytB and GcpE, because they are codistributed with other pathway enzymes, have been predicted to catalyze unknown steps in the nonmevalonate pathway for isoprenoid biosynthesis. We constructed a conditional Escherichia coli lytB mutant and found that LytB is essential for survival and that depletion of LytB results in cell lysis, which is consistent with a role for this protein in isoprenoid bi...

متن کامل

Targeting isoprenoid biosynthesis for drug discovery: bench to bedside.

The isoprenoid biosynthesis pathways produce the largest class of small molecules in Nature: isoprenoids (also called terpenoids). Not surprisingly then, isoprenoid biosynthesis is a target for drug discovery, and many drugs--such as Lipitor (used to lower cholesterol), Fosamax (used to treat osteoporosis), and many anti-infectives--target isoprenoid biosynthesis. However, drug resistance in ma...

متن کامل

Atomic-Resolution Structures of Discrete Stages on the Reaction Coordinate of the [Fe4S4] Enzyme IspG (GcpE).

IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent and an epoxide substrate analogue, we were now abl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 25  شماره 

صفحات  -

تاریخ انتشار 2010